\(\int \frac {\cos ^2(e+f x) (c+d \sin (e+f x))^n}{a+a \sin (e+f x)} \, dx\) [942]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [F]
   Fricas [F]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 33, antiderivative size = 119 \[ \int \frac {\cos ^2(e+f x) (c+d \sin (e+f x))^n}{a+a \sin (e+f x)} \, dx=-\frac {\sqrt {2} \operatorname {AppellF1}\left (\frac {3}{2},\frac {1}{2},-n,\frac {5}{2},\frac {1}{2} (1-\sin (e+f x)),\frac {d (1-\sin (e+f x))}{c+d}\right ) \cos (e+f x) (1-\sin (e+f x)) (c+d \sin (e+f x))^n \left (\frac {c+d \sin (e+f x)}{c+d}\right )^{-n}}{3 a f \sqrt {1+\sin (e+f x)}} \]

[Out]

-1/3*AppellF1(3/2,-n,1/2,5/2,d*(1-sin(f*x+e))/(c+d),1/2-1/2*sin(f*x+e))*cos(f*x+e)*(1-sin(f*x+e))*(c+d*sin(f*x
+e))^n*2^(1/2)/a/f/(((c+d*sin(f*x+e))/(c+d))^n)/(1+sin(f*x+e))^(1/2)

Rubi [A] (verified)

Time = 0.19 (sec) , antiderivative size = 119, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.121, Rules used = {2993, 2834, 144, 143} \[ \int \frac {\cos ^2(e+f x) (c+d \sin (e+f x))^n}{a+a \sin (e+f x)} \, dx=-\frac {\sqrt {2} (1-\sin (e+f x)) \cos (e+f x) (c+d \sin (e+f x))^n \left (\frac {c+d \sin (e+f x)}{c+d}\right )^{-n} \operatorname {AppellF1}\left (\frac {3}{2},\frac {1}{2},-n,\frac {5}{2},\frac {1}{2} (1-\sin (e+f x)),\frac {d (1-\sin (e+f x))}{c+d}\right )}{3 a f \sqrt {\sin (e+f x)+1}} \]

[In]

Int[(Cos[e + f*x]^2*(c + d*Sin[e + f*x])^n)/(a + a*Sin[e + f*x]),x]

[Out]

-1/3*(Sqrt[2]*AppellF1[3/2, 1/2, -n, 5/2, (1 - Sin[e + f*x])/2, (d*(1 - Sin[e + f*x]))/(c + d)]*Cos[e + f*x]*(
1 - Sin[e + f*x])*(c + d*Sin[e + f*x])^n)/(a*f*Sqrt[1 + Sin[e + f*x]]*((c + d*Sin[e + f*x])/(c + d))^n)

Rule 143

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Simp[((a + b*x)
^(m + 1)/(b*(m + 1)*(b/(b*c - a*d))^n*(b/(b*e - a*f))^p))*AppellF1[m + 1, -n, -p, m + 2, (-d)*((a + b*x)/(b*c
- a*d)), (-f)*((a + b*x)/(b*e - a*f))], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] &&  !IntegerQ[m] &&  !Inte
gerQ[n] &&  !IntegerQ[p] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !(GtQ[d/(d*a - c*b), 0] && GtQ[
d/(d*e - c*f), 0] && SimplerQ[c + d*x, a + b*x]) &&  !(GtQ[f/(f*a - e*b), 0] && GtQ[f/(f*c - e*d), 0] && Simpl
erQ[e + f*x, a + b*x])

Rule 144

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Dist[(e + f*x)^
FracPart[p]/((b/(b*e - a*f))^IntPart[p]*(b*((e + f*x)/(b*e - a*f)))^FracPart[p]), Int[(a + b*x)^m*(c + d*x)^n*
(b*(e/(b*e - a*f)) + b*f*(x/(b*e - a*f)))^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] &&  !IntegerQ[m]
&&  !IntegerQ[n] &&  !IntegerQ[p] && GtQ[b/(b*c - a*d), 0] &&  !GtQ[b/(b*e - a*f), 0]

Rule 2834

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c*(C
os[e + f*x]/(f*Sqrt[1 + Sin[e + f*x]]*Sqrt[1 - Sin[e + f*x]])), Subst[Int[(a + b*x)^m*(Sqrt[1 + (d/c)*x]/Sqrt[
1 - (d/c)*x]), x], x, Sin[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b
^2, 0] &&  !IntegerQ[2*m] && EqQ[c^2 - d^2, 0]

Rule 2993

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(
x_)])^(n_), x_Symbol] :> Dist[a^(2*m), Int[(c + d*Sin[e + f*x])^n/(a - b*Sin[e + f*x])^m, x], x] /; FreeQ[{a,
b, c, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] && IntegersQ[m, p] && EqQ[2*m + p, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\int (a-a \sin (e+f x)) (c+d \sin (e+f x))^n \, dx}{a^2} \\ & = \frac {\cos (e+f x) \text {Subst}\left (\int \frac {\sqrt {1-x} (c+d x)^n}{\sqrt {1+x}} \, dx,x,\sin (e+f x)\right )}{a f \sqrt {1-\sin (e+f x)} \sqrt {1+\sin (e+f x)}} \\ & = \frac {\left (\cos (e+f x) (c+d \sin (e+f x))^n \left (-\frac {c+d \sin (e+f x)}{-c-d}\right )^{-n}\right ) \text {Subst}\left (\int \frac {\sqrt {1-x} \left (-\frac {c}{-c-d}-\frac {d x}{-c-d}\right )^n}{\sqrt {1+x}} \, dx,x,\sin (e+f x)\right )}{a f \sqrt {1-\sin (e+f x)} \sqrt {1+\sin (e+f x)}} \\ & = -\frac {\sqrt {2} \operatorname {AppellF1}\left (\frac {3}{2},\frac {1}{2},-n,\frac {5}{2},\frac {1}{2} (1-\sin (e+f x)),\frac {d (1-\sin (e+f x))}{c+d}\right ) \cos (e+f x) (1-\sin (e+f x)) (c+d \sin (e+f x))^n \left (\frac {c+d \sin (e+f x)}{c+d}\right )^{-n}}{3 a f \sqrt {1+\sin (e+f x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.94 (sec) , antiderivative size = 229, normalized size of antiderivative = 1.92 \[ \int \frac {\cos ^2(e+f x) (c+d \sin (e+f x))^n}{a+a \sin (e+f x)} \, dx=-\frac {\sec (e+f x) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^2 \sqrt {-\frac {d (-1+\sin (e+f x))}{c+d}} (c+d \sin (e+f x))^{1+n} \left (-\left ((c+d) (2+n) \operatorname {AppellF1}\left (1+n,\frac {1}{2},\frac {1}{2},2+n,\frac {c+d \sin (e+f x)}{c-d},\frac {c+d \sin (e+f x)}{c+d}\right )\right )+(1+n) \operatorname {AppellF1}\left (2+n,\frac {1}{2},\frac {1}{2},3+n,\frac {c+d \sin (e+f x)}{c-d},\frac {c+d \sin (e+f x)}{c+d}\right ) (c+d \sin (e+f x))\right )}{a d (-c+d) f (1+n) (2+n) \sqrt {\frac {d (1+\sin (e+f x))}{-c+d}}} \]

[In]

Integrate[(Cos[e + f*x]^2*(c + d*Sin[e + f*x])^n)/(a + a*Sin[e + f*x]),x]

[Out]

-((Sec[e + f*x]*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^2*Sqrt[-((d*(-1 + Sin[e + f*x]))/(c + d))]*(c + d*Sin[e
+ f*x])^(1 + n)*(-((c + d)*(2 + n)*AppellF1[1 + n, 1/2, 1/2, 2 + n, (c + d*Sin[e + f*x])/(c - d), (c + d*Sin[e
 + f*x])/(c + d)]) + (1 + n)*AppellF1[2 + n, 1/2, 1/2, 3 + n, (c + d*Sin[e + f*x])/(c - d), (c + d*Sin[e + f*x
])/(c + d)]*(c + d*Sin[e + f*x])))/(a*d*(-c + d)*f*(1 + n)*(2 + n)*Sqrt[(d*(1 + Sin[e + f*x]))/(-c + d)]))

Maple [F]

\[\int \frac {\left (\cos ^{2}\left (f x +e \right )\right ) \left (c +d \sin \left (f x +e \right )\right )^{n}}{a +a \sin \left (f x +e \right )}d x\]

[In]

int(cos(f*x+e)^2*(c+d*sin(f*x+e))^n/(a+a*sin(f*x+e)),x)

[Out]

int(cos(f*x+e)^2*(c+d*sin(f*x+e))^n/(a+a*sin(f*x+e)),x)

Fricas [F]

\[ \int \frac {\cos ^2(e+f x) (c+d \sin (e+f x))^n}{a+a \sin (e+f x)} \, dx=\int { \frac {{\left (d \sin \left (f x + e\right ) + c\right )}^{n} \cos \left (f x + e\right )^{2}}{a \sin \left (f x + e\right ) + a} \,d x } \]

[In]

integrate(cos(f*x+e)^2*(c+d*sin(f*x+e))^n/(a+a*sin(f*x+e)),x, algorithm="fricas")

[Out]

integral((d*sin(f*x + e) + c)^n*cos(f*x + e)^2/(a*sin(f*x + e) + a), x)

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^2(e+f x) (c+d \sin (e+f x))^n}{a+a \sin (e+f x)} \, dx=\text {Timed out} \]

[In]

integrate(cos(f*x+e)**2*(c+d*sin(f*x+e))**n/(a+a*sin(f*x+e)),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\cos ^2(e+f x) (c+d \sin (e+f x))^n}{a+a \sin (e+f x)} \, dx=\int { \frac {{\left (d \sin \left (f x + e\right ) + c\right )}^{n} \cos \left (f x + e\right )^{2}}{a \sin \left (f x + e\right ) + a} \,d x } \]

[In]

integrate(cos(f*x+e)^2*(c+d*sin(f*x+e))^n/(a+a*sin(f*x+e)),x, algorithm="maxima")

[Out]

integrate((d*sin(f*x + e) + c)^n*cos(f*x + e)^2/(a*sin(f*x + e) + a), x)

Giac [F]

\[ \int \frac {\cos ^2(e+f x) (c+d \sin (e+f x))^n}{a+a \sin (e+f x)} \, dx=\int { \frac {{\left (d \sin \left (f x + e\right ) + c\right )}^{n} \cos \left (f x + e\right )^{2}}{a \sin \left (f x + e\right ) + a} \,d x } \]

[In]

integrate(cos(f*x+e)^2*(c+d*sin(f*x+e))^n/(a+a*sin(f*x+e)),x, algorithm="giac")

[Out]

integrate((d*sin(f*x + e) + c)^n*cos(f*x + e)^2/(a*sin(f*x + e) + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^2(e+f x) (c+d \sin (e+f x))^n}{a+a \sin (e+f x)} \, dx=\int \frac {{\cos \left (e+f\,x\right )}^2\,{\left (c+d\,\sin \left (e+f\,x\right )\right )}^n}{a+a\,\sin \left (e+f\,x\right )} \,d x \]

[In]

int((cos(e + f*x)^2*(c + d*sin(e + f*x))^n)/(a + a*sin(e + f*x)),x)

[Out]

int((cos(e + f*x)^2*(c + d*sin(e + f*x))^n)/(a + a*sin(e + f*x)), x)